Theoretical Prediction and Experimental Verification of Protein-Coding Genes in Plant Pathogen Genome Agrobacterium tumefaciens Strain C58

نویسندگان

  • Qian Wang
  • Yang Lei
  • Xiwen Xu
  • Gejiao Wang
  • Ling-Ling Chen
چکیده

Agrobacterium tumefaciens strain C58 is a Gram-negative soil bacterium capable of inducing tumors (crown galls) on many dicotyledonous plants. The genome of A. tumefaciens strain C58 was re-annotated based on the Z-curve method. First, all the 'hypothetical genes' were re-identified, and 29 originally annotated 'hypothetical genes' were recognized to be non-coding open reading frames (ORFs). Theoretical evidence obtained from principal component analysis, clusters of orthologous groups of proteins occupation, and average length distribution showed that these non-coding ORFs were highly unlikely to encode proteins. Results from the reverse transcription-polymerase chain reaction (RT-PCR) experiments on three different growth stages of A. tumefaciens C58 confirmed that 23 (79%) of the identified non-coding ORFs have no transcripts in these growth stages. In addition, using theoretical prediction, 19 potential protein-coding genes were predicted to be new protein-coding genes. Fifteen (79%) of these genes were verified with RT-PCR experiments. The RT-PCR experimental results confirmed the reliability of our theoretical prediction, indicating that false-positive prediction and missing genes always exist in the annotation of A. tumefaciens C58 genome. The improved annotation will serve as a valuable resource for the research of the lifestyle, metabolism, and pathogenicity of A. tumefaciens C58. The re-annotation of A. tumefaciens C58 can be obtained from http://211.69.128.148/Atum/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance.

Agrobacterium tumefaciens C58 mutates to tetracycline resistance at high frequency, complicating the use of many broad-host-range cloning and binary vectors that code for resistance to this antibiotic as the selection marker. Such mutations are associated with a resistant gene unit, tetC58, that is present in the genome of this strain. By deleting the tetC58 locus, we constructed NTL4, a deriva...

متن کامل

Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide.

An early step in crown gall tumor formation involves the attachment of Agrobacterium tumefaciens to host plant cells. A. tumefaciens C58::A205 (C58 attR) is a Tn3HoHo1 insertion mutant that was found to be avirulent on Bryophyllum daigremontiana and unable to attach to carrot suspension cells. The mutation mapped to an open reading frame encoding a putative protein of 247 amino acids which has ...

متن کامل

Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens

The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the h...

متن کامل

Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58.

Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to ...

متن کامل

Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012